Published in

Wiley, FEBS Letters, 5(588), p. 720-726, 2014

DOI: 10.1016/j.febslet.2014.01.015

Links

Tools

Export citation

Search in Google Scholar

Decreased IL-10 expression in stefin B-deficient macrophages is regulated by the MAP kinase and STAT-3 signaling pathways

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Innate immune responses are tightly regulated to avoid excessive activation and subsequent inflammatory damage to the host, and interleukin-10 (IL-10) plays a crucial role in preventing inflammation. Stefin B (cystatin B) is an endogenous inhibitor of cysteine proteinases. In stefin B-deficient bone marrow-derived macrophages (BMDMs), we detected an increase in the induction of the LPS-induced pro-inflammatory signal nitric oxide (NO) but decreased IL-10 expression. The phosphorylation of ERK and p38 MAP-kinases was significantly decreased in stefin B-deficient macrophages, as was STAT-3 phosphorylation. These findings show that stefin B influences the expression of anti-inflammatory IL-10 in response to the TLR4 agonist LPS.