Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Brain Research, (1621), p. 82-101, 2015

DOI: 10.1016/j.brainres.2014.10.019

Links

Tools

Export citation

Search in Google Scholar

Regulation of hippocampal synaptic plasticity by BDNF

Journal article published in 2015 by Graciano Leal, Pedro M. Afonso, Ivan L. Salazar, Carlos B. Duarte ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a major regulator of activity-dependent plasticity at excitatory synapses in the mammalian central nervous system. In particular, much attention has been given to the role of the neurotrophin in the regulation of hippocampal long-term potentiation (LTP), a sustained enhancement of excitatory synaptic strength believed to underlie learning and memory processes. In this review we summarize the evidence pointing to a role for BDNF in generating functional and structural changes at synapses required for both early- and late phases of LTP in the hippocampus. The available information regarding the pre- and/or postsynaptic release of BDNF and action of the neurotrophin during LTP will be also reviewed. Finally, we discuss the effects of BDNF on the synaptic proteome, either by acting on the protein synthesis machinery and/or by regulating protein degradation by calpains and possibly by the ubiquitin-proteasome system (UPS). This fine-tuned control of the synaptic proteome rather than a simple upregulation of the protein synthesis may play a key role in BDNF-mediated synaptic potentiation.