Published in

American Society for Clinical Investigation, Journal of Clinical Investigation

DOI: 10.1172/jci34613

Links

Tools

Export citation

Search in Google Scholar

Revisiting oxidative damage in ALS: Microglia, Nox, and mutant SOD1

Journal article published in 2008 by Séverine Boillée, Don W. Cleveland ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Mutation in superoxide dismutase-1 (SOD1) causes the inherited degenerative neurological disease familial amyotrophic lateral sclerosis (ALS), a non-cell-autonomous disease: mutant SOD1 synthesis in motor neurons and microglia drives disease onset and progression, respectively. In this issue of the JCI, Harraz and colleagues demonstrate that SOD1 mutants expressed in human cell lines directly stimulate NADPH oxidase (Nox) by binding to Rac1, resulting in overproduction of damaging ROS (see the related article beginning on page 659). Diminishing ROS by treatment with the microglial Nox inhibitor apocynin or by elimination of Nox extends survival in ALS mice, reviving the proposal that ROS mediate ALS pathogenesis, but with a new twist: it's ROS produced by microglia.