Published in

Public Library of Science, PLoS ONE, 10(5), p. e13309, 2010

DOI: 10.1371/journal.pone.0013309

Links

Tools

Export citation

Search in Google Scholar

Viewing Pictures of a Romantic Partner Reduces Experimental Pain: Involvement of Neural Reward Systems

Journal article published in 2010 by Jarred Younger, Arthur Aron, Sara Parke, Neil Chatterjee, Sean Mackey ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The early stages of a new romantic relationship are characterized by intense feelings of euphoria, well-being, and preoccupation with the romantic partner. Neuroimaging research has linked those feelings to activation of reward systems in the human brain. The results of those studies may be relevant to pain management in humans, as basic animal research has shown that pharmacologic activation of reward systems can substantially reduce pain. Indeed, viewing pictures of a romantic partner was recently demonstrated to reduce experimental thermal pain. We hypothesized that pain relief evoked by viewing pictures of a romantic partner would be associated with neural activations in reward-processing centers. In this functional magnetic resonance imaging (fMRI) study, we examined fifteen individuals in the first nine months of a new, romantic relationship. Participants completed three tasks under periods of moderate and high thermal pain: 1) viewing pictures of their romantic partner, 2) viewing pictures of an equally attractive and familiar acquaintance, and 3) a word-association distraction task previously demonstrated to reduce pain. The partner and distraction tasks both significantly reduced self-reported pain, although only the partner task was associated with activation of reward systems. Greater analgesia while viewing pictures of a romantic partner was associated with increased activity in several reward-processing regions, including the caudate head, nucleus accumbens, lateral orbitofrontal cortex, amygdala, and dorsolateral prefrontal cortex – regions not associated with distraction-induced analgesia. The results suggest that the activation of neural reward systems via non-pharmacologic means can reduce the experience of pain.