Published in

Elsevier, Bioorganic and Medicinal Chemistry, 1(20), p. 270-278, 2012

DOI: 10.1016/j.bmc.2011.11.001

Links

Tools

Export citation

Search in Google Scholar

NMR-based conformational analysis of sphingomyelin in bicelles

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sphingomyelin (SM) is a common sphingolipid in mammalian membranes and is known to be substantially involved in cellular events such as the formation of lipid rafts. Despite its biological significance, conformation of SM in a membrane environment remains unclear because the noncrystalline property and anisotropic environment of lipid bilayers hampers the application of X-ray crystallography and NMR measurements. In this study, to elucidate the conformation of SM in membranes, we utilized bicelles as a substitute for a lipid bilayer membrane. First, we demonstrated through (31)P NMR, (2)H NMR, and dynamic light scattering experiments that SM forms both oriented and isotropic bicelles by changing the ratio of SM/dihexanoyl phosphatidylcholine. Then, we determined the conformation of SM in isotropic bicelles on the basis of coupling constants and NOE correlations in (1)H NMR and found that the C2-C6 and amide groups of SM take a relatively rigid conformation in bicelles.