Published in

Elsevier, Biochemical and Biophysical Research Communications, 2(421), p. 268-273, 2012

DOI: 10.1016/j.bbrc.2012.03.150

Links

Tools

Export citation

Search in Google Scholar

Inhibition of cell proliferation and migration by oxidative stress from ascorbate-driven juglone redox cycling in human bladder-derived T24 cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The effects of juglone on T24 cells were assessed in the presence and absence of ascorbate. The EC(50) value for juglone at 24 h decreased from 28.5 μM to 6.3 μM in the presence of ascorbate. In juglone-treated cells, ascorbate increased ROS formation (4-fold) and depleted GSH (65%). N-acetylcysteine or catalase restricted the juglone/ascorbate-mediated effects, highlighting the role of oxidative stress in juglone cytotoxicity. Juglone alone or associated with ascorbate did not cause caspase-3 activation or PARP cleavage, suggesting necrosis-like cell death. DNA damage and the mild ER stress caused by juglone were both enhanced by ascorbate. In cells treated with juglone (1-5 μM), a concentration-dependent decrease in cell proliferation was observed. Ascorbate did not impair cell proliferation but its association with juglone led to a clonogenic death state. The motility of ascorbate-treated cells was not affected. Juglone slightly restricted motility, but cells lost their ability to migrate most noticeably when treated with juglone plus ascorbate. We postulate that juglone kills cells by a necrosis-like mechanism inhibiting cell proliferation and the motility of T24 cells. These effects are enhanced in the presence of ascorbate.