Published in

Elsevier, Behavioural Brain Research, 1(224), p. 100-106

DOI: 10.1016/j.bbr.2011.05.022

Links

Tools

Export citation

Search in Google Scholar

Early life stress decreases hippocampal BDNF content and exacerbates recognition memory deficits induced by repeated d-amphetamine exposure

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Adverse experiences early in life may have profound influences on brain development, for example, determining alterations in response to psychostimulant drugs, an increased risk of developing a substance abuse disorder, and individual differences in the vulnerability to neuropsychiatric disorders later in life. Here, we investigated the effects of exposure to an early adverse life event, maternal deprivation, combined with repeated d-amphetamine (AMPH) administration in adulthood, on recognition memory and brain-derived neurotrophic factor (BDNF) levels in rats' brain and serum. Rats were exposed to one of the following maternal rearing conditions from postnatal days 1 to 14: non-deprived (ND) or deprived (D). In adulthood, both groups received injections of saline (SAL) or AMPH (2.0mg/kg, i.p.) for 7 days. In Experiment I (performed 24h after the last AMPH injection), AMPH induced long-term memory (LTM) impairments in ND and D groups. The D+AMPH group also presented short-term memory (STM) impairments, indicating that the effects of AMPH on memory were more pronounced when the animals where maternally deprived. The group exposed to D+SAL (SAL) showed only LTM impairments. In Experiment II (performed 8 days after the last injection), AMPH detrimental effects on memory persisted in ND and D groups. BDNF levels were decreased in the hippocampus of D+SAL rats. In conclusion, AMPH produces severe and persistent recognition memory impairments that were more pronounced when the animals were maternally deprived, suggesting that an early adverse life event may increase the vulnerability of cognitive function to exposure to a psychostimulant later in life.