Published in

Springer, Data Mining and Knowledge Discovery, 3(29), p. 626-688, 2014

DOI: 10.1007/s10618-014-0365-y

Links

Tools

Export citation

Search in Google Scholar

Graph-based Anomaly Detection and Description: A Survey

Journal article published in 2014 by Leman Akoglu, Hanghang Tong ORCID, Danai Koutra
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Detecting anomalies in data is a vital task, with numerous high-impact applications in areas such as security, finance, health care, and law enforcement. While numerous techniques have been developed in past years for spotting outliers and anomalies in unstructured collections of multi-dimensional points, with graph data becoming ubiquitous, techniques for structured {\em graph} data have been of focus recently. As objects in graphs have long-range correlations, a suite of novel technology has been developed for anomaly detection in graph data. This survey aims to provide a general, comprehensive, and structured overview of the state-of-the-art methods for anomaly detection in data represented as graphs. As a key contribution, we provide a comprehensive exploration of both data mining and machine learning algorithms for these {\em detection} tasks. we give a general framework for the algorithms categorized under various settings: unsupervised vs. (semi-)supervised approaches, for static vs. dynamic graphs, for attributed vs. plain graphs. We highlight the effectiveness, scalability, generality, and robustness aspects of the methods. What is more, we stress the importance of anomaly {\em attribution} and highlight the major techniques that facilitate digging out the root cause, or the `why', of the detected anomalies for further analysis and sense-making. Finally, we present several real-world applications of graph-based anomaly detection in diverse domains, including financial, auction, computer traffic, and social networks. We conclude our survey with a discussion on open theoretical and practical challenges in the field. ; Comment: Survey on Graph-Based Anomaly Detection. Algorithms and Applications. Static Graphs. Dynamic Graphs. Graph Anomaly Description. 49 pages (without citations)