Published in

Elsevier, Water Research, 2(36), p. 501-509

DOI: 10.1016/s0043-1354(01)00232-9

Links

Tools

Export citation

Search in Google Scholar

Simultaneous P and N removal in a sequencing batch biofilm reactor: Insights from reactor- and microscale investigations

Journal article published in 2002 by A. Giesek, A. Gieseke, P. Arnz, R. Amann, A. Schramm ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A sequencing batch biofilm reactor (SBBR) with well established enhanced biological phosphate removal (EBPR) was subjected to higher ammonium concentrations to stimulate and eventually implement simultaneous nitrification. Changes of activity and populations were investigated by a combination of online monitoring, microsensor measurements and fluorescence in situ hybridisation (FISH) of biofilm sections. Nitrification and nitrifying bacteria were always restricted to the periodically oxic biofilm surface. Both, activity and population size increased significantly with higher ammonium concentrations. Nitrification always showed a delay after the onset of aeration, most likely due to competition for oxygen by coexisting P accumulating and other heterotrophic bacteria during the initial aeration phase. This view is also supported by comparing oxygen penetration and oxygen uptake rates under low and high ammonium conditions. Therefore, simultaneous nitrification and phosphorus removal in a P removing SBBR appears to be only possible with a sufficiently long oxic period to ensure oxygen availability for nitrifiers.