Dissemin is shutting down on January 1st, 2025

Published in

Springer (part of Springer Nature), Cellular and Molecular Life Sciences, 14(71), p. 2747-2758

DOI: 10.1007/s00018-013-1526-7

Links

Tools

Export citation

Search in Google Scholar

Ube3a, the E3 ubiquitin ligase causing Angelman syndrome and linked to autism, regulates protein homeostasis through the proteasomal shuttle Rpn10

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ubiquitination, the covalent attachment of ubiquitin to a target protein, regulates most cellular processes and is involved in several neurological disorders. In particular, Angelman syndrome and one of the most common genomic forms of autism, dup15q, are caused respectively by lack of or excess of UBE3A, a ubiquitin E3 ligase. Its Drosophila orthologue, Ube3a, is also active during brain development. We have now devised a protocol to screen for substrates of this particular ubiquitin ligase. In a neuronal cell system, we find direct ubiquitination by Ube3a of three proteasome-related proteins Rpn10, Uch-L5, and CG8209, as well as of the ribosomal protein Rps10b. Only one of these, Rpn10, is targeted for degradation upon ubiquitination by Ube3a, indicating that degradation might not be the only effect of Ube3a on its substrates. Furthermore, we report the genetic interaction in vivo between Ube3a and the C-terminal part of Rpn10. Overexpression of these proteins leads to an enhanced accumulation of ubiquitinated proteins, further supporting the biochemical evidence of interaction obtained in neuronal cells.