Published in

American Chemical Society, Journal of Proteome Research, 8(10), p. 3386-3398, 2011

DOI: 10.1021/pr101294v

Links

Tools

Export citation

Search in Google Scholar

Inverse Regulation in the Metabolic GenespckAandmetERevealed by Proteomic Analysis of theSalmonellaRcsCDB Regulon

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The RcsC, RcsD, and RcsB proteins compose a system used by enteric bacteria to sense envelope stress. Signal transmission occurs from the sensor RcsC to the transcriptional regulator RcsB. Accessory proteins, such as IgaA, are known to adjust the response level. In a previous transcriptomic study, we uncovered 85 genes differentially expressed in Salmonella enterica serovar Typhimurium igaA mutants. Here, we extended these observations to proteomics by performing differential isotope-coded protein labeling (ICPL) followed by liquid chromatography-electrospray ionization tandem mass spectrometry. Five-hundred five proteins were identified and quantified, with 75 of them displaying significant changes in response to alterations in the RcsCDB system. Divergent expression at the RNA and protein level was observed for the metabolic genes pckA and metE, involved in gluconeogenesis and methionine synthesis, respectively. When analyzed in diverse environmental conditions, including the intracellular niche of eukaryotic cells, inverse regulation was more evident for metE and in bacteria growing in defined minimal medium or to stationary phase. The RcsCDB system was also shown to repress the synthesis of the small RNA FnrS, previously reported to modulate metE expression. Collectively, these findings provide new insights into post-transcriptional regulatory mechanisms involving the RcsCDB system and its control over metabolic functions.