Published in

Oxford University Press (OUP), Molecular Plant, 5(4), p. 869-878, 2011

DOI: 10.1093/mp/ssr038

Links

Tools

Export citation

Search in Google Scholar

Changes in Cinnamic Acid Derivatives Associated with the Habituation of Maize Cells to Dichlobenil

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The habituation of cell cultures to cellulose biosynthesis inhibitors such as dichlobenil (DCB) represents a valuable tool to improve our knowledge of the mechanisms involved in plant cell wall structural plasticity. Maize cell lines habituated to lethal concentrations of DCB were able to grow through the acquisition of a modified cell wall in which cellulose was partially replaced by a more extensive network of arabinoxylans. The aim of this work was to investigate the phenolic metabolism of non-habituated and DCB-habituated maize cell cultures. Maize cell cultures were fed [(14)C]cinnamate and the fate of the radioactivity in different intra-protoplasmic and wall-localized fractions throughout the culture cycle was analyzed by autoradiography and scintillation counting. Non-habituated and habituated cultures did not markedly differ in their ability to uptake exogenous [(14)C]cinnamic acid. However, interesting differences were found in the radiolabeling of low- and high-M(r) metabolites. Habituated cultures displayed a higher number and amount of radiolabeled low-M(r) compounds, which could act as reserves later used for polysaccharide feruloylation. DCB-habituated cultures were highly enriched in esterified [(14)C]dehydrodiferulates and larger coupling products. In conclusion, an extensive and early cross-linking of hydroxycinnamates was observed in DCB-habituated cultures, probably strengthening their cellulose-deficient walls.