Dissemin is shutting down on January 1st, 2025

Published in

Bentham Science Publishers, Current Topics in Medicinal Chemistry, 20(11), p. 2566-2577

DOI: 10.2174/156802611797633438

Links

Tools

Export citation

Search in Google Scholar

Protective Effect of Schizolobium parahyba Flavonoids Against Snake Venoms and Isolated Toxins

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Four compounds (isoquercitrin, myricetin-3-O-glucoside, catechin and gallocatechin) were isolated from lyophilized aqueous extract of Schizolobium parahyba leaves by chromatography on Sephadex LH-20, followed by semipreparative HPLC using a C-18 column, and identified by 1H and 13C NMR. The compounds were then, tested against hemorrhagic and fibrinogenolytic activities of Bothrops crude venoms and isolated metalloproteinases. The inhibitors neutralized the biological and enzymatic activities of Bothrops venoms and toxins isolated from B. jararacussu and B. neuwiedi venoms. The results showed that gallocatechin and myricetin-3-O-glucoside are good inhibitors of hemorrhagic and fibrinogenolytic activities of metalloproteinases, respectively. Gallocatechin also inhibited the myotoxic activity of both B. alternatus venom and BnSP-6 (Lys49 PhospholipaseA2 from B. neuwiedi). Circular dichroism and docking simulation studies were performed in order to investigate the possible interaction between BnSP-6 and gallocatechin. This is the first time these compounds and their anti-ophidian properties are reported for S. parahyba species. Forthcoming studies involving X-ray co-crystallization, will be of great importance for the development of new therapeutic agents for the treatment of ophidian accidents and for the better understanding of the structure/function relationship of venom toxins.