Dissemin is shutting down on January 1st, 2025

Published in

Springer, Journal of Materials Science: Materials in Medicine, 3(22), p. 637-646, 2011

DOI: 10.1007/s10856-011-4238-2

Links

Tools

Export citation

Search in Google Scholar

Hydroxyapatite-collagen composites. Part I: Can the decrease of the interactions between the two components be a physicochemical component of osteoporosis in aged bone?

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The interactions of Type I acid soluble collagen (Col) with both carbonate-free hydroxyapatite (HA(1100)) and carbonate-rich one (CHA) were investigated. The aim was to ascertain whether the increase of bone CO(3) (2-) with ageing could relate to the disease known as osteoporosis. HA(1100)-Col and CHA-Col composites with various ratios were prepared and examined. Scanning electron microscopy and differential scanning calorimetry showed a stronger adhesion of the Col matrix to the granules of HA(1100) than to those of CHA. FT-IR spectroscopy showed that with HA(1100) both multiple hydrogen bonds of Col peptide -NH groups with HA PO(4) (3-), and electrochemical interactions between Col peptide -C=O groups and HA Ca(2+) were present. In the presence of CO(3) (2-), the interactions between -NH and phosphate were diminished, and Ca(2+) interacted more strongly with CO(3) (2-) than with peptide -C=O, so causing a separation between the two components of the bone extra-cellular matrix. The results obtained strengthen the hypothesis that the substitution of PO(4) (3-) ions by CO(3) (2-) ions in the HA lattice might be a significant component of osteoporosis, although further investigation is needed.