Published in

Springer, Functional and Integrative Genomics, 2(9), p. 263-270, 2009

DOI: 10.1007/s10142-009-0109-z

Links

Tools

Export citation

Search in Google Scholar

Novel genes related to nodulation, secretion systems, and surface structures revealed by a genome draft of Rhizobium tropici strain PRF 81

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Rhizobium tropici is representative of the diversity of tropical rhizobia, besides comprising strains very effective in fixing N(2) in symbiosis with the common bean (Phaseolus vulgaris L.). The genome of a Brazilian commercial inoculant R. tropici strain (PRF 81, =SEMIA 4088), estimated at 7.85 Mb, was analyzed through a total of 9,026 shotgun reads, assembled in 1,668 phrap contigs, and covering approximately 30% of the genome. Annotation identified 2,135 coding DNA sequences (CDS), and only 57.2% have possible functions. The genome comprises a mosaic of genes, with CDS showing the highest similarities with 134 microorganisms, none of which represents more than 19% of the CDS with putative known functions. The high saprophytic capacity of PRF 81 may reside in a variety of genes related to transport, biodegradation of xenobiotics, defense, and secretion proteins, many of which were reported for the first time in the present study. Novelty was also found in nodulation (nodG, a double nodIJ system, nodT, nolF, nolG) and capsular polysaccharide genes, showing stronger similarities with Sinorhizobium (=Ensifer) than with the main symbionts of the common bean -- R. etli and R. leguminosarum -- suggesting that the original host of R. tropici might be another tropical legume or emphasizing the highly promiscuous nature of this rhizobial species.