Published in

Springer (part of Springer Nature), BioEnergy Research, 1(6), p. 75-82

DOI: 10.1007/s12155-012-9232-0

Links

Tools

Export citation

Search in Google Scholar

Fuel Characteristics of Solid Biofuel Derived from Oil Palm Biomass and Fast Growing Timber Species in Malaysia

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The fuel characteristics of solid biofuels derived from biomass that is abundantly available in Malaysia are presented. The objectives of the study were to characterize fuel properties of oil palm biomass (empty fruit bunch (EFB) and oil palm trunk (OPT)) and wood from a range of fast growing timber species (Albizia falcataria, Acacia spp., Endospermum spp. and Macaranga spp.), inclusive and exclusive of bark. Among the fast-growing timber species, the higher heating values ranged from 4288 cal g-1 to 4383 cal g-1 for wood inclusive of bark, and 4134 cal g-1 to 4343 cal g-1 for wood exclusive of bark. The inclusive of bark portion in the biomass sample generally increased the heating value except for Macaranga spp. Empty fruit bunch and oil palm trunk had heating values of 4315 cal g-1 and 4104 cal g-1, respectively. Ash-forming elements and trace elements were much higher in the timber species samples inclusive of bark than samples exclusive of bark. On the other hand, oil palm biomass contained higher ash-forming elements and trace elements than the wood from the fast growing timber species. The European energy crops show higher HHV, Cl and Si content but lower K, Mg, Na and P compared to the local biomass used in this study. The data obtained from this study can serve as a foundation for the selection of suitable biomass to be used as solid fuel, or as a reference on the fabrication of conversion systems for the selection of biomass solid fuel.