Published in

Elsevier, Materials Science and Engineering: B, 2-3(88), p. 118-124

DOI: 10.1016/s0921-5107(01)00862-5

Links

Tools

Export citation

Search in Google Scholar

Optical properties of self-assembled lateral superlattices in AlInAs epitaxial layers and AlAs/InAs short-period superlattices

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Characterization of self-assembled lateral superlattices in AlInAs epitaxial layers and AlAs/InAs short-period superlattices is presented. These structures are spontaneously generated during the epitaxial growth by metal–organic chemical vapor deposition and molecular beam epitaxy. Transmission electron microscopy reveals the structural details and electro-modulated reflectance is used to characterize the energy and anisotropy of the optical transitions in the lateral superlattices. We demonstrate several properties of these self-assembled structures: (a) the band gap energy can be changed by as much as 350 meV, (b) the polarization anisotropy of the lowest energy transition exceeds 90%, (c) the superlattice axis and the direction of the optical anisotropy can be oriented along two non-equivalent directions in the plane of the substrate, and (d) the valence band splitting between heavy- and light-hole transitions is significant. We discuss the difference between the samples from the two growth techniques. Finally, we theoretically model the electronic states in these lateral superlattices and we demonstrate that the difference in average InAs composition between the well and barrier can be as high as 35%.