Links

Tools

Export citation

Search in Google Scholar

Two types of fucoxanthin-chlorophyll-binding proteins I tightly bound to the photosystem I core complex in marine centric diatoms - 1-s2.0-S0005272813000297-main

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Intact fucoxanthin (Fucox)-chlorophyll (Chl)-binding protein I-photosystem I supercomplexes (FCPI-PSIs) were prepared by a newly developed simple fast procedure from centric diatoms Chaetoceros gracilis and Thalassiosira pseudonana to study the mechanism of their efficient solar energy accumulation. FCPI-PSI purified from C. gracilis contained 252 Chl a, 23 Chl c, 56 Fucox, 34 diadinoxanthin+diatoxanthin, 1 violaxanthin, 21 ß-carotene, and 2 menaquinone-4 per P700. The complex showed a high electron transfer activity at 185,000 μmol mg Chl a−1·h−1 to reduce methyl viologen from added cytochrome c6. We identified 14 and 21 FCP proteins in FCPI-PSI of C. gracilis and T. pseudonana, respectively, determined by N-terminal and internal amino acid sequences and liquid chromatography–tandem mass spectrometry (LC–MS/MS) analyses. PsaO and a red lineage Chla/ b-binding-like protein (RedCAP), Thaps3:270215, were also identified. Severe detergent treatment of FCPI-PSI released FCPI-1 first, leaving the FCPI-2-PSI-core complex. FCPI-1 contained more Chl c and showedChl a fluorescence at a shorter wavelength than FCPI-2, suggesting an excitation-energy transfer fromFCPI-1 to FCPI-2 and then to the PSI core. Fluorescence emission spectra at 17 K in FCPI-2 varied depending on the excitation wavelength, suggesting two independent energy transfer routes.We formulated amodel of FCPI-PSI based on the biochemical assay results.