Published in

American Institute of Physics, Applied Physics Letters, 6(100), p. 063102

DOI: 10.1063/1.3682084

Links

Tools

Export citation

Search in Google Scholar

Entropy change linked to the magnetic field induced Morin transition in Hematite nanoparticles

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The most stable form of iron oxide is Hematite (α-Fe2O3), which has interesting electronic, catalytic, and magnetic properties showing size dependent characteristics. At room temperature, Hematite is weakly ferromagnetic with a rhombohedral corundum structure. Upon cooling, the structure undergoes a first order spin reorientation, in which the net magnetic moment is lost. This transition is called the Morin transition. In this work, the first order Morin transition has been analyzed as a function of the temperature and applied magnetic field in Hematite nanoparticles. The magnetization was measured in the temperature range of the transformation at different applied magnetic fields to evaluate the entropy change linked to the Morin transition. The magnetic field promotes a shift of the transformation temperature. The change of entropy has been estimated on the basis of Clausius-Clapeyron type equation.