Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Langmuir, 15(24), p. 7817-7829, 2008

DOI: 10.1021/la703456t

Links

Tools

Export citation

Search in Google Scholar

Fulvic Acid Sorption on Muscovite Mica as a Function of pH and Time Using In Situ X-ray Reflectivity

Journal article published in 2008 by Sang Soo Lee, Paul Fenter, Changyong Park ORCID, Kathryn L. Nagy
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Interfacial structures of the basal surface of muscovite mica in 100 mg kg (-1) Elliott Soil Fulvic Acid II solutions were investigated using in situ X-ray reflectivity. Molecular-scale variations in the thickness and internal structure of the fulvic acid (FA) film were observed and quantified as a function of pH (2-12) and reaction time (3-500 h at pH 3.7). At pH < or =6, the electron-density profile of the FA layer sorbed on the muscovite surface was composed of one near-surface peak followed by a broad peak that diminished in electron density with distance from the surface. The presence of the near-surface peak is attributed to condensation of FA molecules during sorption. The apparent thickness of the FA layer decreased from 12.3 to 7.2 to 6.4 A as pH increased from 2 to 3.7 to 6, respectively. At pH > or =8.5, a distinct interfacial structure was observed, consisting of sharper peaks similar to those previously observed for muscovite in the absence of FA. These peaks are most likely composed of smaller aqueous species, such as H 2O molecules, metal ion impurities from FA, and Na (+) from NaOH. The FA sorbed on the muscovite surface at pH 3.7 maintained a relatively constant thickness after 3 hours. However, the electron density of the near-surface FA peak increased by about 24% from 3 to 12 hours, and remained relatively constant from 12 to 500 hours. The electron density of the more distant part of the sorbed FA layer increased slightly after 12-50 hours of reaction but then decreased, and the broad peak flattened by 500 hours. Internal structural changes are possibly due to the slow sorption rate of FA molecules, or a fractionation effect, i.e., continuous subsitution of smaller FA molecules by larger FA molecules.