Published in

Wiley, FEBS Journal, 6(275), p. 1201-1212, 2008

DOI: 10.1111/j.1742-4658.2008.06280.x

Links

Tools

Export citation

Search in Google Scholar

Allosteric modulation of Euphorbia peroxidase by nickel ions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A class III peroxidase, isolated and characterized from the latex of the perennial Mediterranean shrub Euphorbia characias, contains one ferric iron-protoporphyrin IX pentacoordinated with a histidine 'proximal' ligand as heme prosthetic group. In addition, the purified peroxidase contained 1 mole of endogenous Ca(2+) per mole of enzyme, and in the presence of excess Ca(2+), the catalytic efficiency was enhanced by three orders of magnitude. The incubation of the native enzyme with Ni(2+) causes reversible inhibition, whereas, in the presence of excess Ca(2+), Ni(2+) leads to an increase of the catalytic activity of Euphorbia peroxidase. UV/visible absorption spectra show that the heme iron remains in a quantum mechanically mixed-spin state as in the native enzyme after addition of Ni(2+), and only minor changes in the secondary or tertiary structure of the protein could be detected by fluorescence or CD measurements in the presence of Ni(2+). In the presence of H(2)O(2) and in the absence of a reducing agent, Ni(2+) decreases the catalase-like activity of Euphorbia peroxidase and accelerates another pathway in which the inactive stable species accumulates with a shoulder at 619 nm. Analysis of the kinetic measurements suggests that Ni(2+) affects the H(2)O(2)-binding site and inhibits the formation of compound I. In the presence of excess Ca(2+), Ni(2+) accelerates the reduction of compound I to the native enzyme. The reported results are compatible with the hypothesis that ELP has two Ni(2+)-binding sites with opposite functional effects.