Published in

Elsevier, Clinica Chimica Acta, 1-2(329), p. 23-38, 2003

DOI: 10.1016/s0009-8981(03)00003-2

Links

Tools

Export citation

Search in Google Scholar

Protein carbonyl groups as biomarkers of oxidative stress

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Oxidative stress, an imbalance toward the pro-oxidant side of the pro-oxidant/antioxidant homeostasis, occurs in several human diseases. Among these diseases are those in which high levels of protein carbonyl (CO) groups have been observed, including Alzheimer's disease (AD), rheumatoid arthritis, diabetes, sepsis, chronic renal failure, and respiratory distress syndrome. What relationships might be among high level of protein CO groups, oxidative stress, and diseases remain uncertain.The usage of protein CO groups as biomarkers of oxidative stress has some advantages in comparison with the measurement of other oxidation products because of the relative early formation and the relative stability of carbonylated proteins. Most of the assays for detection of protein CO groups involve derivatisation of the carbonyl group with 2,4-dinitrophenylhydrazine (DNPH), which leads to formation of a stable dinitrophenyl (DNP) hydrazone product. This then can be detected by various means, such as spectrophotometric assay, enzyme-linked immunosorbent assay (ELISA), and one-dimensional or two-dimensional electrophoresis followed by Western blot immunoassay. At present, the measurement of protein CO groups after their derivatisation with DNPH is the most widely utilized measure of protein oxidation.