Published in

Elsevier, Neural Networks, 7(18), p. 951-957

DOI: 10.1016/j.neunet.2005.02.006

Links

Tools

Export citation

Search in Google Scholar

Sensitivity analysis applied to the construction of radial basis function networks

Journal article published in 2005 by D. Shi, D. S. Yeung, J. Gao ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Conventionally, a radial basis function (RBF) network is constructed by obtaining cluster centers of basis function by maximum likelihood learning. This paper proposes a novel learning algorithm for the construction of radial basis function using sensitivity analysis. In training, the number of hidden neurons and the centers of their radial basis functions are determined by the maximization of the output's sensitivity to the training data. In classification, the minimal number of such hidden neurons with the maximal sensitivity will be the most generalizable to unknown data. Our experimental results show that our proposed sensitivity-based RBF classifier outperforms the conventional RBFs and is as accurate as support vector machine (SVM). Hence, sensitivity analysis is expected to be a new alternative way to the construction of RBF networks.