Published in

Future Medicine, Pharmacogenomics, 3(7), p. 407-419, 2006

DOI: 10.2217/14622416.7.3.407

Links

Tools

Export citation

Search in Google Scholar

Identifying illness parameters in fatiguing syndromes using classical projection methods

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Objectives: To examine the potential of multivariate projection methods in identifying common patterns of change in clinical and gene expression data that capture the illness state of subjects with unexplained fatigue and nonfatigued control participants. Methods: Data for 111 female subjects was examined. A total of 59 indicators, including multidimensional fatigue inventory (MFI), medical outcome Short Form 36 (SF-36), Centers for Disease Control and Prevention (CDC) symptom inventory and cognitive response described illness. Partial least squares (PLS) was used to construct two feature spaces: one describing the symptom space from gene expression in peripheral blood mononuclear cells (PBMC) and one based on 117 clinical variables. Multiplicative scatter correction followed by quantile normalization was applied for trend removal and range adjustment of microarray data. Microarray quality was assessed using mean Pearson correlation between samples. Benjamini-Hochberg multiple testing criteria served to identify significantly expressed probes. Results: A single common trend in 59 symptom constructs isolates of nonfatigued subjects from the overall group. This segregation is supported by two co-regulation patterns representing 10% of the overall microarray variation. Of the 39 principal contributors, the 17 probes annotated related to basic cellular processes involved in cell signaling, ion transport and immune system function. The single most influential gene was sestrin 1 (SESN1), supporting recent evidence of oxidative stress involvement in chronic fatigue syndrome (CFS). Dominant variables in the clinical feature space described heart rate variability (HRV) during sleep. Potassium and free thyroxine (T4) also figure prominently. Conclusion: Combining multiple symptom, gene or clinical variables into composite features provides better discrimination of the illness state than even the most influential variable used alone. Although the exact mechanism is unclear, results suggest a common link between oxidative stress, immune system dysfunction and potassium imbalance in CFS patients leading to impaired sympatho-vagal balance strongly reflected in abnormal HRV.