Published in

Wiley Open Access, Aging Cell, 6(12), p. 1144-1147, 2013

DOI: 10.1111/acel.12142

Links

Tools

Export citation

Search in Google Scholar

Lifespan extension by dietary intervention in a mouse model of Cockayne Syndrome uncouples early postnatal development from segmental progeria

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Cockayne Syndrome (CS) is a rare autosomal recessive segmental progeria characterized by growth failure, lipodystrophy, neurological abnormalities and photosensitivity but without skin cancer predisposition. CS life expectancy ranges from 5 to 16 years for the two most severe forms (Types II and I, respectively). Mouse models of CS have thus far been of limited value due either to very mild phenotypes, or premature death during postnatal development prior to weaning. The cause of death in severe CS models is unknown but has been attributed to extremely rapid aging. Here, we found that providing mutant pups with soft food from as late as postnatal day 14 allowed survival past weaning with high penetrance independent of dietary macronutrient balance in a novel CS model (Csa(-/-) | Xpa(-/-) ). Survival past weaning revealed a number of CS-like symptoms including small size, progressive loss of adiposity and neurological symptoms, with a maximum lifespan of 19 weeks. Our results caution against interpretation of death before weaning as premature aging, and at the same time provide a valuable new tool for understanding mechanisms of progressive CS-related progeroid symptoms including lipodystrophy and neurodysfunction. This article is protected by copyright. All rights reserved.