Published in

20th International Conference on Optical Fibre Sensors

DOI: 10.1117/12.835797

Links

Tools

Export citation

Search in Google Scholar

In vivo 4D imaging of the human lower airway using anatomical optical coherence tomography

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Anatomical optical coherence tomography (aOCT) is a long-range, fibre-optic endoscopic imaging modality capable of quantifying the size and shape of the human airway lumen. This paper presents the first application of respiratory gating to 3D aOCT volumetric data. A sequence of time-gated data volumes are generated, characterising the dynamic behaviour of a segment of the lower airway over an averaged respiratory cycle. The technique is demonstrated on in vivo data acquired from three human subjects.