Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], British Journal of Cancer, 8(75), p. 1160-1166, 1997

DOI: 10.1038/bjc.1997.200

Links

Tools

Export citation

Search in Google Scholar

The effects of perfusion conditions on melphalan distribution in the isolated perfused rat hindlimb bearing a human melanoma xenograft.

Journal article published in 1997 by Zy Y. Wu, Bm M. Smithers ORCID, Pg G. Parsons ORCID, Ms S. Roberts
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An isolated rat hindlimb perfusion model carrying xenografts of the human melanoma cell line MM96 was used to study the effects of perfusion conditions on melphalan distribution. Krebs-Henseleit buffer and Hartmann's solution containing 4.7% bovine serum albumin (BSA) or 2.8% dextran 40 were used as perfusates. Melphalan concentrations in perfusate, tumour nodules and normal tissues were measured using high-performance liquid chromatography (HPLC). Increasing the perfusion flow rates (from 4 to 8 ml min(-1)) resulted in higher tissue blood flow (determined with 51Cr-labelled microspheres) and melphalan uptake by tumour and normal tissues. The distribution of melphalan within tumour nodules and normal tissues was similar for both Krebs-Henseleit buffer and Hartmann's solution; however, tissue concentrations of melphalan were significantly higher for a perfusate containing 2.8% dextran 40 than for one containing 4.7% BSA. The melphalan concentration in the tumour was one-third of that found in the skin if the perfusate contained 4.7% BSA. In conclusion, this study has shown that a high perfusion flow enhances the delivery of melphalan into implanted tumour nodules and normal tissues, and a perfusate with low melphalan binding (no albumin) is preferred for maximum uptake of drug by the tumour.