Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Tree Physiology, 7(29), p. 901-911, 2009

DOI: 10.1093/treephys/tpp034

Links

Tools

Export citation

Search in Google Scholar

Short-term dynamics of nonstructural carbohydrates and hemicelluloses in young branches of temperate forest trees during bud break

Journal article published in 2009 by C. Schadel ORCID, A. Blochl, A. Richter, G. Hoch
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nonstructural carbohydrates (NSC) are the most important C reserves in the tissues of deciduous and evergreen tree species. Besides NSC, cell-wall hemicelluloses as the second most abundant polysaccharides in plants have often been discussed to serve as additional mobile carbon (C) reserves during periods of enhanced carbon-sink activities. To assess the significance of hemicelluloses as mobile carbon reserves, branches of two deciduous (Carpinus betulus L. and Fagus sylvatica L.) and two evergreen (Picea abies L. and Pinus sylvestris L.) tree species were sampled in a mature mixed forest stand in short intervals before and during bud break to assess NSC and hemicellulose concentrations in response to the increased carbon demand during bud break. Starch concentrations in branch sapwood of deciduous trees strongly decreased immediately before bud break and increased after bud break. In both evergreen species, only small changes of NSC were found in branch sapwood. However, 1-year-old needles exhibited a significant increase in starch concentration shortly before bud break which declined again after flushing. Hemicellulose concentrations (on an NSC-free dry matter basis) in branch sapwood of Carpinus decreased significantly shortly before bud break, but increased again after bud break. Contrarily, in Fagus branch sapwood, hemicellulose concentrations remained constant during bud break. Moderate increases of total hemicellulose concentrations before bud break were found in 1-year-old needles of both conifers, which could be explained by an accumulation of glucose units within the hemicellulose fraction. Overall, cell-wall hemicelluloses appeared to respond in a species-specific manner to the enhanced carbon demand during bud break. Hemicelluloses in branch sapwood of Carpinus and in 1-year-old needles of conifers likely act as additional carbon reserves similar to starch.