Dissemin is shutting down on January 1st, 2025

Published in

Proceedings of the 2011 IEEE International Symposium on Sustainable Systems and Technology

DOI: 10.1109/issst.2011.5936913

Links

Tools

Export citation

Search in Google Scholar

Design for resilience in coupled industrial-ecological systems: Biofuels industry as a case study

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

When designing and operating engineered systems, attention has generally been focused upon achieving stability and predictability of system operations and functions. However, in a complex coupled system, with increasing uncertainties from external drivers and perturbations, the consideration of equilibrium states is far less important than the question of persistence or survivability. We argue that resilience or its key features (e.g., functional/structural diversity and adaptability), which usually have been discussed as intrinsic characteristics of ecological or social-ecological systems, should also be embedded in industrial systems, by purposely giving operational instabilities. The idea of designing resilient and sustainable industrial system has already been proposed by several researchers by incorporating diversity, efficiency, cohesion, adaptability, and transformability [1], [2] but those are limited to qualitative approaches. Moreover, most of the discussions on resilience within engineered systems favor the adaptation of risk analysis and management [3]. Therefore, our research aims to develop a practical and quantitative ways of operationalizing resilience as originally applied in an ecological context.