Published in

American Chemical Society, Bioconjugate Chemistry, 4(21), p. 583-588, 2010

DOI: 10.1021/bc900564w

Links

Tools

Export citation

Search in Google Scholar

Copper-free click chemistry for highly luminescent quantum dot conjugates: application to in vivo metabolic imaging.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Quantum dots (QD) are inorganic nanocrystals with outstanding optical properties, specially suited for biological imaging applications. Their attachment to biomolecules in mild aqueous conditions for the design of bioconjugates is therefore highly desirable. 1,3-dipolar [3 + 2] cycloaddition between azides and terminal alkynes ("click chemistry") could represent an attractive QD functionalization method. Unfortunately, the use of the popular Cu(I)-catalyzed version of this reaction is not applicable for achieving this goal, since the presence of copper dramatically alters the luminescence properties of QD dispersions. We demonstrate here that copper-free click chemistry, between strained cyclooctyne functionalized QD and azido-biomolecules, leads to highly luminescent conjugates. In addition, we show that QD-cyclooctyne can be used at previously unreported low concentration (250 nM) for imaging the incorporation of azido-modified sialic acid in cell membrane glycoproteins.