Published in

Associação Brasileira de Divulgação Científica, Brazilian Journal of Medical and Biological Research, 3(35), p. 369-375, 2002

DOI: 10.1590/s0100-879x2002000300013

Links

Tools

Export citation

Search in Google Scholar

Serotyping HIV-1 with V3 peptides: detection of high avidity antibodies presenting clade-specific reactivity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

The main objective of the present study was to assess the specificity and sensitivity of a modified assay using short synthetic peptides of the V3 region of HIV-1 gp120, which is the main target for neutralizing antibodies. Results from an enzyme immunoassay (EIA) employing a panel of synthetic peptides of HIV-1 subtypes and using urea washes to detect high avidity antibodies (AAV3) were compared with those obtained by the heteroduplex mobility assay and DNA sequencing. The EIA correctly typed 100% of subtype B (sensitivity = 1.0; specificity = 0.95), 100% of HIV-1 E samples (sensitivity = 1.0; specificity = 1.0), and 95% of subtype C specimens (sensitivity = 0.95; specificity = 0.94). In contrast, only 50% of subtype A (sensitivity = 0.5; specificity = 0.95), 60% of subtype D (sensitivity = 0.6; specificity = 1.0), and 28% of subtype F samples (sensitivity = 0.28; specificity = 0.95) were correctly identified. This approach was also able to discriminate in a few samples antibodies from patients infected with B variants circulating in Brazil and Thailand that reacted specifically. The assays described in this study are relatively rapid and simple to perform compared to molecular approaches and can be used to screen large numbers of serum or plasma samples. Moreover, the classification in subtypes (genotypes) may overestimate HIV-1 diversity and a classification into serotypes, based on antigenic V3 diversity or another principal neutralization domain, may be more helpful for vaccine development and identification of variants.