Published in

Elsevier, Talanta, 4(63), p. 1021-1025

DOI: 10.1016/s0039-9140(04)00028-1

Elsevier, Talanta, 4(63), p. 1021-1025

DOI: 10.1016/j.talanta.2004.01.008

Links

Tools

Export citation

Search in Google Scholar

Multivariate monitoring of soybean oil ethanolysis by FTIR

Journal article published in 2004 by Patricio Peralta-Zamora ORCID, Giuliano F. Zagonel, Luiz P. Ramos
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, an analytical procedure was developed to monitor the ethanolysis of degummed soybean oil (DSO) using Fourier-transformed mid-infrared spectroscopy (FTIR) and methods of multivariate analysis such as principal component analysis (PCA) and partial least squares regression (PLS). The triglycerides (reagents) and ethyl esters (products) involved in ethanolysis were shown to have similar FTIR spectra. However, when the FTIR spectra derived from seven standard mixtures of triolein and ethyl oleate were treated by PCA at the region that represents the CO stretching vibration of ester groups (1700-1800cm(-1)), only two principal components (PC) were shown to capture 99.95% of the total spectral variance (92.37% for the former and 7.58% for the latter PC). This observation supported the development of a multivariate calibration model that was based on the PLS regression of the FTIR data. The prevision capability of this model was measured against 40 reaction aliquots whose ester content was previously determined by size exclusion chromatography. Only small discrepancies were observed when the two experimental data sets were treated by linear regression (R(2)=0.9837) and these deviations were attributed to the occurrence of non-modeled transient species in the reaction mixture (reaction intermediates), particularly at short reaction times. Therefore, the FTIR/PLS model was shown to be a fast and accurate method to predict reaction yields and to follow the in situ kinetics of soybean oil ethanolysis.