Published in

Oxford University Press, International Immunology, 3(12), p. 295-303, 2000

DOI: 10.1093/intimm/12.3.295

Links

Tools

Export citation

Search in Google Scholar

Synthetic oligodeoxynucleotide containing CpG motif induces an anti-polysaccharide type 1-like immune response after immunization of mice with Haemophilus influenzae type b conjugate vaccine

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Synthetic oligodeoxynucleotides containing CpG motifs [immunostimulatory sequences (ISS)] have been described as potent adjuvants of type 1 immune responses when co-administered with protein or peptide vaccines. To investigate their role in the immune response to polysaccharides (CHO), different preparations of anti-Haemophilus influenzae type b (Hib) conjugate vaccine were administered to mice. The unconjugated CHO did not induce the synthesis of specific antibodies even in the presence of ISS. On the other hand, anti-CHO-specific antibodies significantly increased in the presence of ISS, when tetanus (TT) or diphtheria [cross-reacting material (CRM)] toxoid-conjugated CHO were used to immunize mice. The adjuvant effect was also observed for the immune response against the carrier protein (TT and CRM). ISS insured an early and long-lasting specific IgG production. The effects of ISS on the anti-CHO immune response could be attributed to the amplification of the T help provided by the carrier. The analysis of anti-CHO IgG subclasses showed a significant increase of IgG2a and IgG3 in the presence of ISS. ISS caused a rapid release of IL-12 and IFN-gamma in sera from treated mice. This data provide a first evidence for the ability of ISS to induce an anti-CHO type 1-like immune response and demonstrate that ISS have the potential to increase host antibody response against both the CHO and the protein component of a conjugated vaccine.