Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical Review Letters, 22(93), 2004

DOI: 10.1103/physrevlett.93.223003

Links

Tools

Export citation

Search in Google Scholar

Laser-induced interference, focusing, and diffraction of rescattering molecular photoelectrons

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We solve the time-dependent Schrodinger equation in three dimensions for H-2(+) in a one-cycle laser pulse of moderate intensity. We consider fixed nuclear positions and Coulomb electron-nuclear interaction potentials. We analyze the field-induced electron interference and diffraction patterns. To extract the ionization dynamics we subtract the excitations to low-lying bound states explicitly. We follow the time evolution of a well-defined wave packet that is formed near the first peak of the laser field. We observe the fragmentation of the wave packet due to molecular focusing. We show how to retrieve a diffraction molecular image by taking the ratio of the momentum distributions in the two lateral directions. The positions of the diffraction peaks are well described by the classical double slit diffraction rule.