Published in

American Chemical Society, Journal of Physical Chemistry C, 45(113), p. 19468-19474, 2009

DOI: 10.1021/jp906827m

Links

Tools

Export citation

Search in Google Scholar

Re-examination of the Size-Dependent Absorption Properties of CdSe Quantum Dots

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We investigate the size-dependent optical absorption coefficients of CdSe nanocrystals at both the band-edge and high within the absorption profile. The absorption properties in both of these regions must be self-consistent to ensure accuracy of the measured coefficients. By combining transmission electron microscopy and inductively coupled plasma−optical emission spectroscopy, we map out the optical absorption properties and establish reliable size-dependent band-edge calibration curves. The measured absorption properties are compared to a simple 0D confinement model, to classical theory based on light absorption by small particles in a dielectric medium and to state-of-the-art atomistic semiempirical pseudopotential modeling. The applicability of these newly established calibration curves is demonstrated by analyzing the nucleation and growth kinetics of CdSe nanocrystals in solution.