Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 3(93), p. 1108-1112, 1996

DOI: 10.1073/pnas.93.3.1108

Links

Tools

Export citation

Search in Google Scholar

Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors.

Journal article published in 1996 by M. S. Gold ORCID, D. B. Reichling, M. J. Shuster, J. D. Levine
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sensitization of primary afferent neurons underlies much of the pain and tenderness associated with tissue injury and inflammation. The increase in excitability is caused by chemical agents released at the site of injury. Because recent studies suggest that an increase in voltage-gated Na+ currents may underlie increases in neuronal excitability associated with injury, we have tested the hypothesis that a tetrodotoxin-resistant voltage-gated Na+ current (TTX-R INa), selectively expressed in a subpopulation of sensory neurons with properties of nociceptors, is a target for hyperalgesic agents. Our results indicate that three agents that produce tenderness or hyperalgesia in vivo, prostaglandin E2, adenosine, and serotonin, modulate TTX-R INa. These agents increase the magnitude of the current, shift its conductance-voltage relationship in a hyperpolarized direction, and increase its rate of activation and inactivation. In contrast, thromboxane B2, a cyclooxygenase product that does not produce hyperalgesia, did not affect TTX-R INa. These results suggest that modulation of TTX-R INa is a mechanism for sensitization of mammalian nociceptors.