Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Multimedia, 5(15), p. 1060-1069, 2013

DOI: 10.1109/tmm.2013.2253452

Links

Tools

Export citation

Search in Google Scholar

Linking Brain Responses to Naturalistic Music Through Analysis of Ongoing EEG and Stimulus Features

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study proposes a novel approach for the analysis of brain responses in the modality of ongoing EEG elicited by the naturalistic and continuous music stimulus. The 512-second long EEG data (recorded with 64 electrodes) are first decomposed into 64 components by independent component analysis (ICA) for each participant. Then, the spatial maps showing dipolar brain activity are selected in terms of the residual dipole variance through a single dipole model in brain imaging, and clustered into a pre-defined number (estimated by the minimum description length) of clusters. Subsequently, the temporal courses of the EEG theta and alpha oscillations of each component for each cluster are produced and correlated with the temporal courses of tonal and rhythmic features of the music. Using this approach, we found that the extracted temporal courses of the theta and alpha oscillations along central and occipital area of scalp in two of the selected clusters significantly correlated with the musical features representing progressions in the rhythmic content of the stimulus. We suggest that this demonstrates that with the proposed approach we have managed to discover what kinds of brain responses were elicited when a participant was listening continuously to the long piece of naturalistic music.