Dissemin is shutting down on January 1st, 2025

Published in

Lippincott, Williams & Wilkins, PAIN, 3(47), p. 299-304, 1991

DOI: 10.1016/0304-3959(91)90219-n

Links

Tools

Export citation

Search in Google Scholar

Impairment of corneal pain perception in cluster headache:

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Despite many studies, the mechanisms underlying the pathogenesis of pain in cluster headache (CH) still remain obscure. An involvement of substance P (SP) containing neurons of the Gasserian ganglion and/or of the spinal trigeminal nucleus has recently been suggested, e.g., by impairment of inhibitory descending pathways on trigeminal nociceptive neurons. The electrically elicited corneal reflex was studied in 21 CH patients (15 in active phase, 6 in remission). This method allows simultaneous measurements of the trigemino-facial reflex and corneal pain perception. A significant reduction of pain thresholds (more evident on the pain side) was observed in CH during the active phase, while normal values were recorded during the remission phase. Ten out of 15 patients in the active phase showed a significantly reduced corneal pain threshold on the pain side, while tactile sensibility was normal. Moreover, latency, amplitude and duration of the corneal reflex were normal for both painful and painless stimulations during both phases. The threshold of the nociceptive muscular response in the active phase was significantly reduced, suggesting that the excitability of trigeminal nociceptive neurons or of the motor neurons is increased in CH. The results agree with the hypothesis that a reversible impairment of several integrative functions, including the activity of trigeminal pain control system, exists in CH during the active phase.