Published in

Elsevier, Biochemical and Biophysical Research Communications, 1(441), p. 114-119

DOI: 10.1016/j.bbrc.2013.10.029

Links

Tools

Export citation

Search in Google Scholar

HIV-1 TAT-mediated protein transduction of human HPRT into deficient cells

Journal article published in 2013 by Paola Cattelan, Diego Dolcetta ORCID, Uros Hladnik ORCID, Elisabetta Fortunati
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Lesch-Nyhan disease (LND) is a severe and incurable X-linked genetic syndrome caused by the deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT), resulting in severe alterations of central nervous system, hyperuricaemia and subsequent impaired renal functions. Therapeutic options consist in supportive care and treatments of complications, but the disease remains largely untreatable. Enzyme replacement of the malfunctioning cytosolic protein might represent a possible therapeutic approach for the LND treatment. Protein transduction domains, such as the TAT peptide derived from HIV TAT protein, have been used to transduce macromolecules into cells in vitro and in vivo. The present study was aimed to the generation of TAT peptide fused to human HPRT for cell transduction in enzyme deficient cells. Here we document the construction, expression and delivery of a functional HPRT enzyme into deficient cells by TAT transduction domain and by liposome mediated protein transfer. With this approach we demonstrate the correction of the enzymatic defect in HPRT deficient cells. Our data show for the first time the feasibility of the enzyme replacement therapy for the treatment of LND.