Published in

Elsevier, Journal of Biological Chemistry, 10(276), p. 7164-7168, 2001

DOI: 10.1074/jbc.m009230200

Links

Tools

Export citation

Search in Google Scholar

Regulation of Platelet Factor Va-dependent Thrombin Generation by Activated Protein C at the Surface of Collagen-adherent Platelets

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Recent studies have indicated that factor Va bound to activated platelets is partially protected from inactivation by activated protein C (APC). To explore whether this sustained factor Va activity could maintain ongoing thrombin generation, the kinetics of platelet factor Va-dependent prothrombinase activity and its inhibition by APC were studied. In an attempt to mimic physiologically relevant conditions, platelets were adhered to collagen type I-coated discs. These discs were then spun in solutions containing prothrombin and factor Xa either in the absence or presence of APC. The experiments were performed in the absence of platelet-derived microparticles, with thrombin generation and inhibition confined to the surface of the adherent platelets. APC completely inactivated platelet-associated prothrombinase activity with an overall second order rate constant of 3.3 x 10(6) m(-)1 s(-)1, which was independent of the prothrombin concentration over a wide range around the apparent K(m) for prothrombin. Kinetic studies on prothrombinase assembled at a planar phospholipid membrane composed of 25 mol % phosphatidylserine and 75 mol % phosphatidylcholine revealed a similar second order rate constant of inhibition (2.5 x 10(6) m(-1) s(-1)). Collectively, these data demonstrate that ongoing platelet factor Va-dependent thrombin generation at the surface of collagen-adherent platelets is effectively inhibited by APC. No differences were observed between the kinetics of APC inactivation of plasma-derived factor Va or platelet factor Va as part of the prothrombinase associated with, respectively, a planar membrane of synthetic phospholipids or collagen-adherent platelets.