Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 18(15), p. 10567-10579, 2015

DOI: 10.5194/acp-15-10567-2015

European Geosciences Union, Atmospheric Chemistry and Physics Discussions, 10(15), p. 14473-14504

DOI: 10.5194/acpd-15-14473-2015

Links

Tools

Export citation

Search in Google Scholar

NO<sub>2</sub> seasonal evolution in the north subtropical free troposphere

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Three years of multi-axis differential optical absorption spectroscopy (MAXDOAS) measurements (2011-2013) have been used for estimating the NO2 mixing ratio along a horizontal line of sight from the high mountain subtropical observatory of Izaña, at 2370 m a.s.l. (NDACC station, 28.3° N, 16.5° W). The method is based on horizontal path calculation from the O2-O2 collisional complex at the 477 nm absorption band which is measured simultaneously to the NO2 column density, and is applicable under low aerosol-loading conditions. The MAXDOAS technique, applied in horizontal mode in the free troposphere, minimizes the impact of the NO2 contamination resulting from the arrival of marine boundary layer (MBL) air masses from thermally forced upwelling breeze during middle hours of the day. Comparisons with in situ observations show that during most of the measuring period, the MAXDOAS is insensitive or very slightly sensitive to the upwelling breeze. Exceptions are found for pollution events during southern wind conditions. On these occasions, evidence of fast, efficient and irreversible transport from the surface to the free troposphere is found. Background NO2 volume mixing ratio (vmr), representative of the remote free troposphere, is in the range of 20-45 pptv. The observed seasonal evolution shows an annual wave where the peak is in phase with the solar radiation. Model simulations with the chemistry-climate CAM-Chem model are in good agreement with the NO2 measurements, and are used to further investigate the possible drivers of the NO2 seasonality observed at Izaña. ; Peer Reviewed