Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Image Processing, 5(19), p. 1138-1152, 2010

DOI: 10.1109/tip.2010.2040446

Links

Tools

Export citation

Search in Google Scholar

Multiscale AM-FM Demodulation and Image Reconstruction Methods With Improved Accuracy

Journal article published in 2010 by Victor Murray, Paul Rodriguez, Marios S. Pattichis ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We develop new multiscale amplitude-modulation frequency-modulation (AM-FM) demodulation methods for image processing. The approach is based on three basic ideas: (i) AM-FM demodulation using a new multiscale filterbank, (ii) new, accurate methods for instantaneous frequency (IF) estimation, and (iii) multiscale least squares AM-FM reconstructions. In particular, we introduce a variable-spacing local linear phase (VS-LLP) method for improved instantaneous frequency (IF) estimation and compare it to an extended quasilocal method and the quasi-eigen function approximation (QEA). It turns out that the new VS-LLP method is a generalization of the QEA method where we choose the best integer spacing between the samples to adapt as a function of frequency. We also introduce a new quasi-local method (QLM) for IF and IA estimation and discuss some of its advantages and limitations. The new IF estimation methods lead to significantly improved estimates. We present different multiscale decompositions to show that the proposed methods can be used to reconstruct and analyze general images.