Springer, Cellular and Molecular Neurobiology, 2(32), p. 201-208, 2011
DOI: 10.1007/s10571-011-9748-4
Full text: Download
Intrachain disulfide bond formation among the cysteine thiols of SNAP-25, a component of the SNARE protein complex required for neurotransmitter release, has been hypothesized to link oxidative stress and inhibition of synaptic transmission. However, neither the availability in vivo of SNAP-25 thiols, which are known targets of S-palmitoylation, nor the tendency of these thiols to form intrachain disulfide bonds is known. We have examined, in rat brain extracts, both the availability of closely spaced, or vicinal, thiol pairs in SNAP-25 and the propensity of these dithiols toward disulfide bond formation using a method improved by us recently that exploits the high chemoselectivity of phenylarsine oxide (PAO) for vicinal thiols. The results show for the first time that a substantial fraction of soluble and, to a lesser extent, particulate SNAP-25 contain non-acylated PAO-binding thiol pairs and that these thiols in soluble SNAP-25 in particular have a high propensity toward disulfide bond formation. Indeed, disulfide bonds were detected in a small fraction of soluble SNAP-25 even under conditions designed to prevent or greatly limit protein thiol oxidation during experimental procedures. These results provide direct experimental support for the availability, in a subpopulation of SNAP-25, of vicinal thiols that may confer on one or more isoforms of this family of proteins a sensitivity to oxidative stress.