Dissemin is shutting down on January 1st, 2025

Published in

Springer, Biochemistry (Moscow), 12(79), p. 1333-1338, 2014

DOI: 10.1134/s0006297914120062

Links

Tools

Export citation

Search in Google Scholar

Distinct Biological Activity of Lipopolysaccharides with Different Lipid A Acylation Status from Mutant Strains of Yersinia pestis and Some Members of Genus Psychrobacter

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Correlation between the chemical structure of lipid A from various Gram-negative bacteria and biological activity of their lipopolysaccharide (LPS) as an agonist of the innate immune receptor Toll-like receptor 4 was investigated. Purified LPS species were quantitatively evaluated by their ability to activate the production of tumor necrosis factor (TNF) by murine bone marrow-derived macrophages in vitro. Wild-type LPS from plague-causing bacteria Yersinia pestis was compared to LPS from mutant strains with defects in acyltransferase genes (lpxM, lpxP) responsible for the attachment of secondary fatty acid residues (12:0 and 16:1) to lipid A. Lipid A of Y. pestis double ΔlpxM/ΔlpxP mutant was found to have the chemical structure that was predicted based on the known functions of the respective acyltransferases. The structures of lipid A from two members of the ancient psychrotrophic bacteria of the genus Psychrobacter were established for the first time, and biological activity of LPS from these bacteria containing lipid A fatty acids with shorter acyl chains (C10-C12) than those in lipid A from LPS of Y. pestis or E. coli (C12-C16) was determined. The data revealed a correlation between the ability of LPS to activate TNF production by bone marrow-derived macrophages with the number and the length of acyl chains within lipid A.