Published in

Elsevier, Solid State Communications, (160), p. 26-31

DOI: 10.1016/j.ssc.2013.02.003

Links

Tools

Export citation

Search in Google Scholar

Internal field induced enhancement and effect of resonance in Raman scattering of InAs nanowires

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An internal field induced resonant intensity enhancement of Raman scattering of phonon excitations in InAs nanowires is reported. The experimental observation is in good agreement with the simulated results for the scattering of light under varying incident wavelengths, originating from the enhanced internal electric field in an infinite dielectric cylinder. Our analysis demonstrates the combined effect of the first higher lying direct band gap energy (E1) and the refractive index of the InAs nanowires in the internal field induced resonant Raman scattering. Furthermore, the difference in the relative contribution of electro-optic effect and deformation potential in Raman scattering of nanowires and bulk InAs over a range of excitation energies is discussed by comparing the intensity ratio of their LO and TO phonon modes. ; Comment: 10 pages, 7 figures