Published in

Wiley, Parasite Immunology, 3(28), p. 69-76, 2006

DOI: 10.1111/j.1365-3024.2005.00801.x

Links

Tools

Export citation

Search in Google Scholar

Kean, D. E. et al. Dissecting Ascaris glycosphingolipids for immunomodulatory moieties - the use of synthetic structural glycosphingolipid analogues. Parasite Immunol. 28, 69-76

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have previously shown glycosphingolipids of Ascaris suum to have phosphorylcholine (PC) and non-PC immunomodulatory moieties. In the present study we further investigated the nature of the immunomodulatory moieties by employing three synthetic glycosphingolipids each possessing features of the original molecule to examine effects on macrophage and dendritic cell (DC) cytokine production and surface co-stimulatory molecule expression. Compound 2, which lacked PC but contained ceramide, had no effect on either macrophages or DCs. Surprisingly however, Compound 1, which contained PC and hence arguably most resembled the native material, had, with the exception of a small increase in surface antigen expression, no immunomodulatory properties. Conversely, Compound 3, which contained PC but was otherwise least like the native molecule, demonstrated a number of effects on both macrophages and DCs, including induction of Th-1/pro-inflammatory cytokines, inhibition of such cytokines induced by IFN-gamma/LPS and increased expression of co-stimulatory molecules. Taken together these results indicate: (i) that although PC is an immunomodulatory component of the native molecule other structural feature are necessary to allow it to act; (ii) that carbohydrate rather than ceramide is likely to represent a non-PC immunomodulatory moiety; and (iii) that synthetic PC-containing molecules have the potential to act as immunomodulatory drugs.