Published in

American Association of Immunologists, The Journal of Immunology, 4(176), p. 2476-2485, 2006

DOI: 10.4049/jimmunol.176.4.2476

Links

Tools

Export citation

Search in Google Scholar

Activation of Invariant NKT Cells by the Helminth Parasite Schistosoma mansoni

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Mouse CD1d-restricted NKT cells, including invariant (i)NKT cells, are innate cells activated by glycolipid Ags and play important roles in the initiation and regulation of immune responses. Through their ability to promptly produce large amounts of Th1 and/or Th2 cytokines upon TCR engagement, iNKT cells exert crucial functions in the immune/inflammatory system during bacterial, protozoan, fungal, and viral infections. However, their roles during metazoan parasite infection, which are generally associated with strong Th2 responses, still remain elusive. In this study, we show that during the course of murine schistosomiasis, iNKT cells exhibit an activated phenotype and that following schistosome egg encounter in the liver, hepatic iNKT cells produce both IFN-γ and IL-4 in vivo. We also report that schistosome egg-sensitized dendritic cells (DCs) activate, in a CD1d-dependent manner, iNKT cells to secrete IFN-γ and IL-4 in vitro. Interestingly, transfer of egg-sensitized DCs promotes a strong Th2 response in recipient wild-type mice, but not in mice that lack iNKT cells. Engagement of TLRs in DCs is not necessary for iNKT cell stimulation in response to egg-sensitized DCs, suggesting an alternative pathway of activation. Finally, we propose that self, rather than parasite-derived, CD1d-restricted ligands are implicated in iNKT cell stimulation. Taken together, our data show for the first time that helminths can activate iNKT cells to produce immunoregulatory cytokines in vivo, enabling them to influence the adaptive immune response.