Dissemin is shutting down on January 1st, 2025

Published in

EDP Sciences, Astronomy & Astrophysics, 2(504), p. 461-489, 2009

DOI: 10.1051/0004-6361/200912468

Reviews in Modern Astronomy, p. 155-166

DOI: 10.1002/9783527634842.ch9

Links

Tools

Export citation

Search in Google Scholar

Star and protoplanetary disk properties in Orion's suburbs

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

(Note: this is a shortened version of the original "structured" A&A format abstract.) We performed a large optical spectroscopic and photometric survey of the Lynds~1630N and 1641 clouds. We provide a catalog of 132 confirmed young stars in L1630N and 267 such objects in L1641. We identify 28 transition disk systems, 20 of which were previously unknown, as well as 42 new transition disk candidates for which we have broad-band photometry but no optical spectroscopy. We estimate mass accretion rates M_acc from the equivalent widths of the H_alpha, H_beta, and HeI 5876Å emission lines, and find a dependence on stellar mass of M_acc propto Mstar^alpha, with alpha~3.1 in the subsolar mass range that we probe. An investigation of a large literature sample of mass accretion rate estimates yields a similar slope of alpha~2.8 in the subsolar regime, but a shallower slope of alpha~2.0 if the whole mass range of 0.04 M_sun-5 Msun is included. Among the transition disk objects, the fraction of stars that show significant accretion activity is relatively low compared to stars with still optically thick disks (26±11% vs. 57±6%, respectively). However, those transition disks that do show significant accretion have the same median accretion rate as normal optically thick disks of 3-4*10^{-9} M_sun/yr. We find that the ages of the transition disks and the WTTSs without disks are statistically indistinguishable, and both groups are significantly older than the CTTSs. These results argue against disk-binary interaction or gravitational instability as mechanisms causing a transition disk appearance. Our observations indicate that disk lifetimes in the clustered population are shorter than in the distributed population. We propose refined Halpha equivalent width criteria to distinguish WTTSs from CTTSs. ; Comment: 52 pages, 16 tables, 29 figures. Accepted by A&A. Table numbering error corrected