Published in

American Chemical Society, Journal of the American Chemical Society, 33(137), p. 10448-10451, 2015

DOI: 10.1021/jacs.5b03907

Links

Tools

Export citation

Search in Google Scholar

Oxygen-18 Kinetic Isotope Effects of Nonheme Iron Enzymes HEPD and MPnS Support Iron(III) Superoxide as the Hydrogen Abstraction Species

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nonheme iron oxygenases that carry out four-electron oxidations of substrate have been proposed to employ iron(III) superoxide species to initiate this reaction [Paria, S.; Que, L.; Paine, T. K. Angew. Chem. Int. Ed. 2011, 50, 11129]. Here we report experimental evidence in support of this proposal. (18)O KIEs were measured for two recently discovered mononuclear nonheme iron oxygenases: hydroxyethylphosphonate dioxygenase (HEPD) and methylphosphonate synthase (MPnS). Competitive (18)O KIEs measured with deuterated substrates are larger than those measured with unlabeled substrates, which indicates that C-H cleavage must occur before an irreversible reductive step at molecular oxygen. A similar observation was previously used to implicate copper(II) superoxide in the H-abstraction reactions catalyzed by dopamine β-monooxygenase [Tian, G. C.; Klinman, J. P. J. Am. Chem. Soc. 1993, 115, 8891] and peptidylglycine α-hydroxylating monooxygenase [Francisco, W. A.; Blackburn, N. J.; Klinman, J. P. Biochemistry 2003, 42, 1813].