Published in

Elsevier, Advances in Applied Mathematics, 3(4), p. 298-351, 1983

DOI: 10.1016/0196-8858(83)90014-3

Links

Tools

Export citation

Search in Google Scholar

On the Piano-Mover's Problem: II. General Techniques for Computing Topological Properties of Real Algebraic Manifolds

Journal article published in 1983 by Jacob T. Schwartz, Micha Sharir
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper continues the discussion, begun in J. Schwartz and M. Sharir [Comm. Pure Appl. Math., in press], of the following problem, which arises in robotics: Given a collection of bodies B, which may be hinged, i.e., may allow internal motion around various joints, and given a region bounded by a collection of polyhedral or other simple walls, decide whether or not there exists a continuous motion connecting two given positions and orientations of the whole collection of bodies. We show that this problem can be handled by appropriate refinements of methods introduced by A. Tarski ["A Decision Method for Elementary Algebra and Geometry," 2nd ed., Univ. of Calif. Press, Berkeley, 1951] and G. Collins [in "Second GI Conference on Automata Theory and Formal Languages," Lecture Notes in Computer Science, Vol. 33, pp. 134-183, Springer-Verlag, Berlin, 1975], which lead to algorithms for this problem which are polynomial in the geometric complexity of the problem for each fixed number of degrees of freedom (but exponential in the number of degrees of freedom). Our method, which is also related to a technique outlined by J. Reif [in "Proceedings, 20th Symposium on the Foundations of Computer Science," pp. 421-427, 1979], also gives a general (but not polynomial time) procedure for calculating all of the homology groups of an arbitrary real algebraic variety. Various algorithmic issues concerning computations with algebraic numbers, which are required in the algorithms presented in this paper, are also reviewed.